n 番目のフィボナッチ数を Fn で表すと、Fn は再帰的に
F0 = 0,
F1 = 1,
Fn + 2 = Fn + Fn + 1 (n ≧ 0)
で定義される。これは、2つの初期条件を持つ漸化式である。
この数列 (Fn)はフィボナッチ数列(フィボナッチすうれつ、Fibonacci sequence)と呼ばれ、
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, …(オンライン整数列大辞典の数列 A45)
と続く。最初の二項は 0, 1 であり、以後どの項もその直前の2つの項の和となっている。

出典フィボナッチ数 - Wikipedia

前へ 次へ

この情報が含まれているまとめはこちら

【神秘】数学美 フィボナッチ数列

「研究とは神々のボードゲームを観戦する行為に似ている」

このまとめを見る